ENGINEERED BAMBOO STRUCTRURES: FUTURE GAME CHANGER IN SUSTAINABLE CONSTRUCTION AND RURAL ECONOMY

Dr. Suresh Bhalla, Professor, Department of Civil Engineering, Indian Institute of

Technology Delhi

Dr. Diwakar Bhagat, Principal,

Department of Science and Technology, Bihar

ahindr Dr. Visalakshi Talakokula, Professor,

Mahendra University, Hyderabad

Dr. S. K. Dhawan, Former ADG CPWD, Structural Consultant and Arbitrator

Er. Vijay. K. Saini, CEO&MD (South Asia), Intellimart

BACKGROUND

WHY BAMBOO FOR CONSTRUCTION

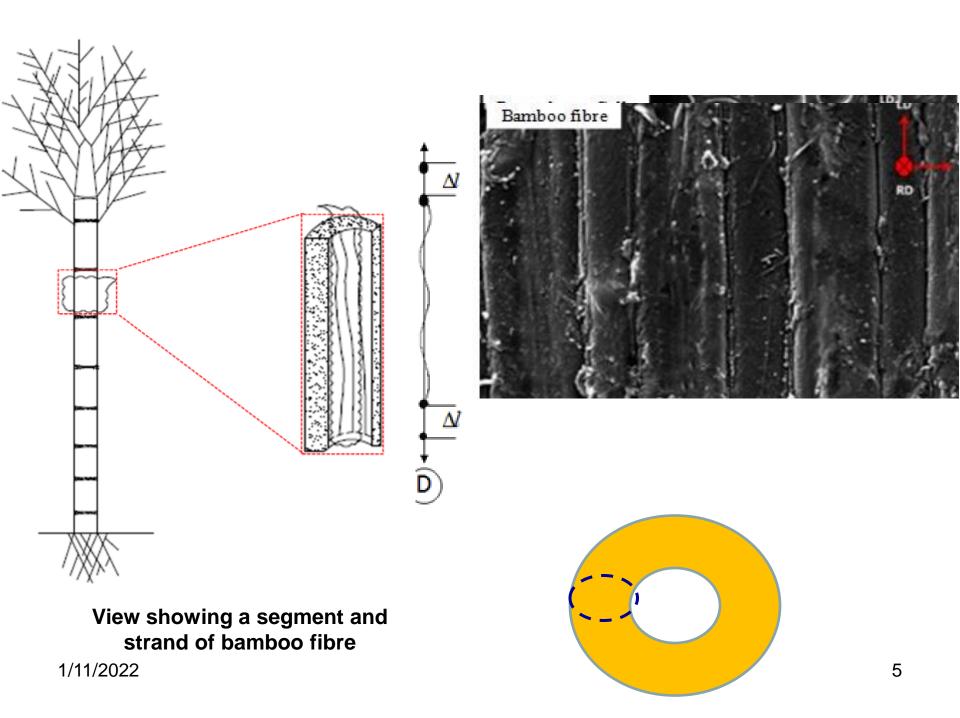
Construction industry is one of the most polluting industries of the world

Production of 1 ton of cement emits > 0.75-1.2 tons of CO₂ in the atmosphere (Barcelo et al., 2014)

Production of 1 ton of steel emits > 1.9 tons of CO_2 in the atmosphere

(World Steel Association, 2021)

WHY BAMBOO??



Production of 1 ton of bamboo consumes> 1 ton of CO₂ of the atmosphere

- * Bamboo offers competitive strength to mass ratio *
- * Unlike timber, matures in 4 to 5 years *
- * Cultivation suitable in tropical climatic conditions*

MILD STEEL	Ultimate strength = 410 MPa	Yield strength = 250 MPa	Young's modulus = 200 GPa	Density = 7850 kg/m ³
CONCRETE (Grade M 30)	Tensile strength = 3.8 MPa	Compressive strength = 38 MPa	U U	Density = 2400 kg/m ³

INTEGRAL PART OF TRADITIONAL HOUSING TECHNOLOGY SINCE THOUSANDS OF YEARS

https://www.freesoundslibrary.com/rural-village-morning-ambience/

RIGVEDA

श्वतं वेणूञ्छतं शुनेः श्वतं चर्माणि म्ला॒तानिं । श्वतं में बल्बजस्तुका अरुंषीणां चतुंःशतम् ॥ ८.०५५.०३

Śatam Venunchatam Śunah Śatam Carmani Mlatani. Śatam Me Balbajastukā Arusīnām Catuhsatam

GOODNESS (SATTVA)

Bestow upon us a hundred bamboo clumps

ENGINEERING **SOULUTION:** COMBINE TRADITIONAL PRACTICES WITH MODERN STURCTUAL ENGINEERING

BAMBOO AS A GREEN ENGINEERING MATERIAL

IN RURAL HOUSING AND AGRICULTURAL STRUCTURES

FOR SUSTAINABLE ECONOMY

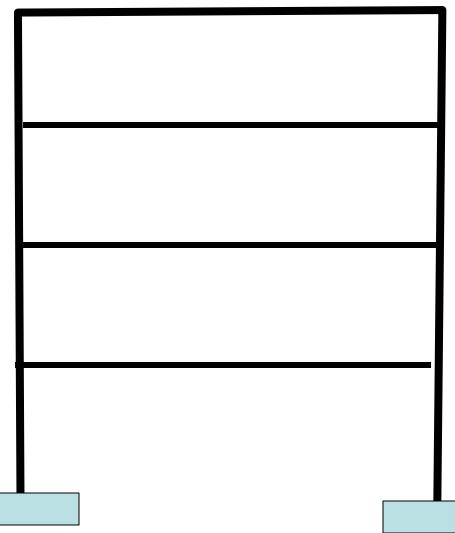
R&D project under Component 4 of National Agricultural Innovation Project (NAIP), Indian Council of Agricultural Research (ICAR)

P A R T N E R S 2008-2013

LIGHT BATTEND BAMBOO SYSTEM (LBBS)

Connection of built up bamboo column to steel base plate

Connection to concrete pedestal



LIGHT BATTEND BAMBOO SYSTEM (LBBS)

- Fast speedy construction
- Suitable for rural warehouses, cowsheds, cottage industries
- Modular construction
- Wind resistant
- Affordable

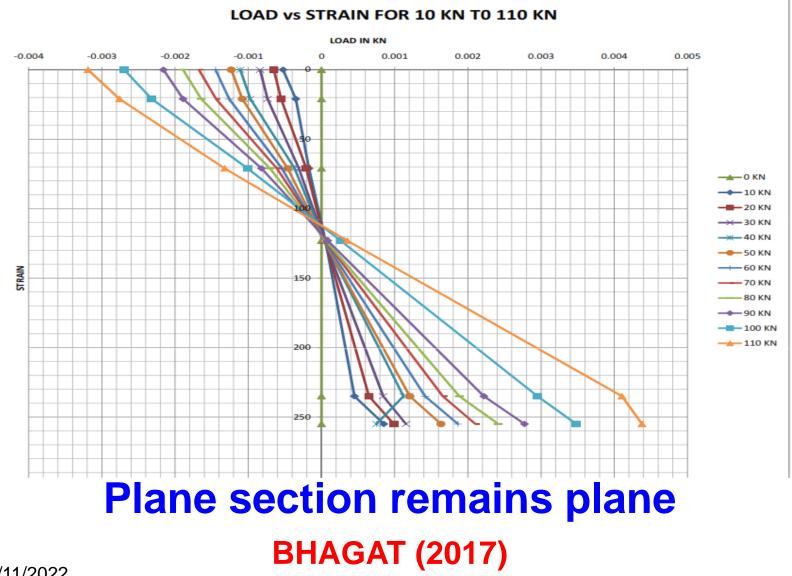
Technology disseminated to NGO (e.g. BGIS Mathura)

HIGH CAPACITY SECTIONS FOR MULTISTOREY FRAMES

Despite high strength, the main shortcoming of single bamboo culm is high slenderness ratio, which leads to under utilization of its strength

HIGH CAPACITY COMPOSITE MEMBERS FRBC (AXIAL/ FLEXURE)....BHAGAT (2017)




FRBC BEAM UNDER TEST

BHAGAT, BHALLA, WEST (2021)

1/11/2022

FRB BEAM – STRAIN ACROSS DEPTH

20

BHAGAT (2017)

BEAM-COLUMN JOINTS



BHAGAT (2017)

TESTING AT TRINITY COLLEGE, UNIVERSITY OF DUBLIN

FRAME 1: UNDER COMBINED MECHANISM

Extremely resilient and ductile behaviour, suitable for seismic design

LVL	TECHNOLOGY READINESS
	LEVEL (Roach and Neidigk, 2011)
1	Physical principles are postulated with reasoning
2	Application for physical principles identified but no results
3	Initial laboratory tests on general hardware configuration to support physical principles
4	Integration level showing systems function in lab tests
5	System testing to evaluate function in realistic environment
6	Evaluation of prototype system
7	Demonstration of complete system prototype in operating environment
8	Certification testing on final system in lab and/or field
9	Final adjustment of system through mission operations

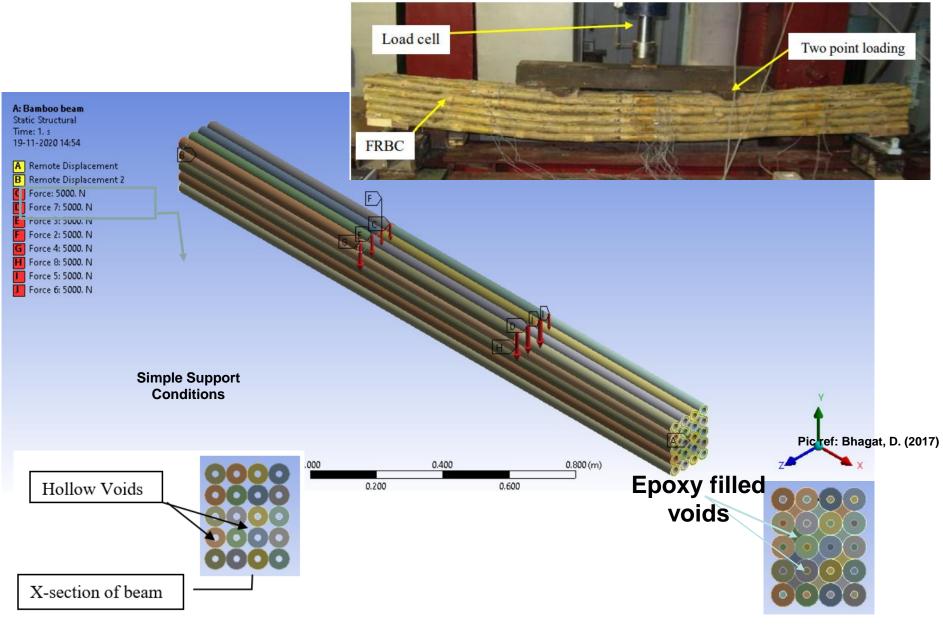
DEVELOPMENT OF ENGINEERED BAMBOO STRUCTURES TECHNOLOGY FOR MODULAR RURAL HOUSING TOWARDS SUSTAINABLE BUILT ENVIRONMENT

PI: Dr. Suresh Bhalla, Professor, Department of Civil Engineering, Indian Institute of Technology Delhi

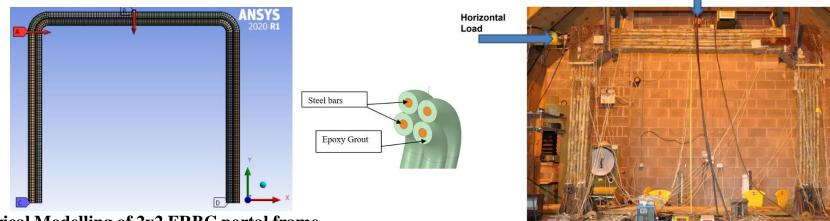
Co-PI(1): Dr. Diwakar Bhagat, Principal, Government Polytechnic, Saharsa, DST Bihar

Co-PI(2): Dr. Visalakshi Talakokula, Professor, Department of Civil Engineering, Mahendra University, Hyderabad

Industrial Partner: Er. Sudhakar Bhagat, STCPL

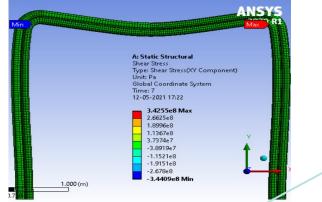

IMPACTING RESEARCH INNOVATION AND TECHNOLOGY

OBJECTIVES

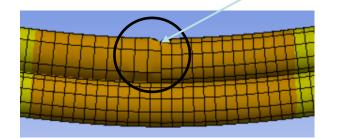

Fibre reinforced bamboo composite (FRBC), invented by IIT Delhi, is a new environment friendly high-capacity structural member suitable for replacing concrete and steel.

- The main objective of the project is to elevate the technology readiness level (TRL) of FRBC to 9 for affordable green housing segment.
- Utilization of FRBC to devise an affordable house suitable for a small rural family. The house should be modular in nature and amenable for vertical and horizontal expansion.
- Conceptual analysis and design, detailed engineering calculations, of 3D frame based on FRBC members suitable for modular housing unit.
- Non-linear 3D analysis of FRBC beams and frames
- Selection and use of suitable green building materials for walls and interiors.
- Construction of prototype house measuring 23 m².

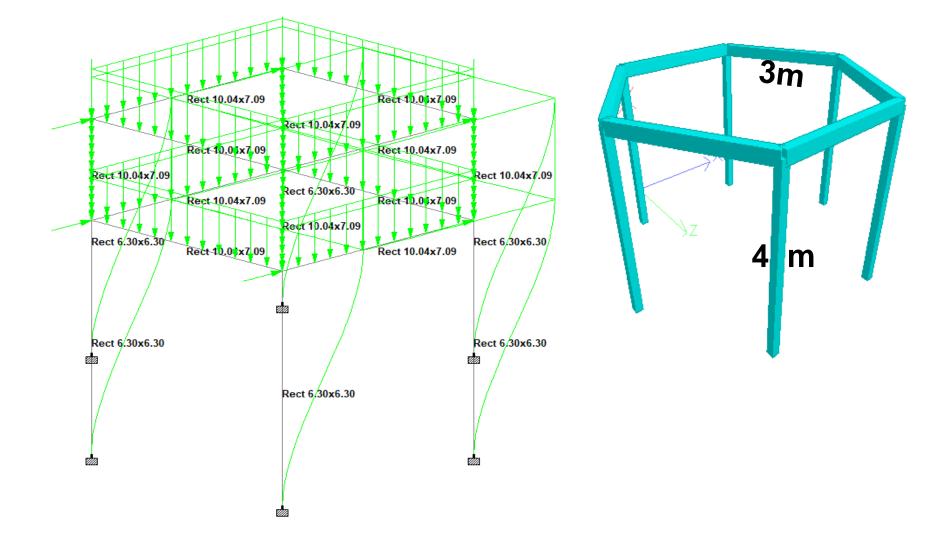
NON LINEAR FEA OF FRBC BEAMS


NON-LINEAR FINITE ELEMENT ANALYSIS

Numerical Modelling of 2x2 FRBC portal frame

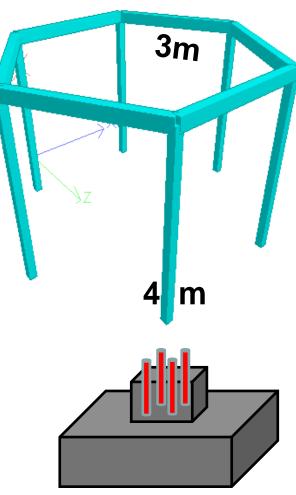

Experimental Setup of 5x6 FRBC portal frame

Vertical Load


Plastic Moment Capacity = 40 kN-m (against experimental value of 36 kN-m

Plastic Hinge Formation

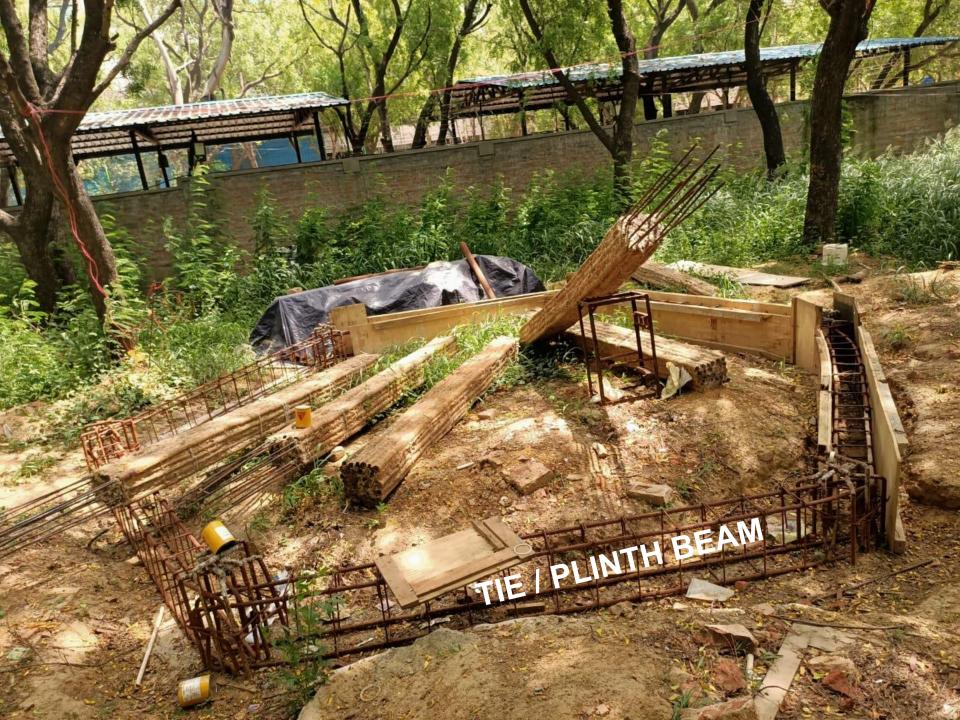
3D ANALYSIS AND DESIGN (LINEARLY ELASTIC ANALYSIS)



3D ANALYSIS AND DESIGN (LINEARLY ELASTIC ANALYSIS ANALYSIS RESULTS (DEAD, IMPOSED, WIND AND EARTHQUAKE)

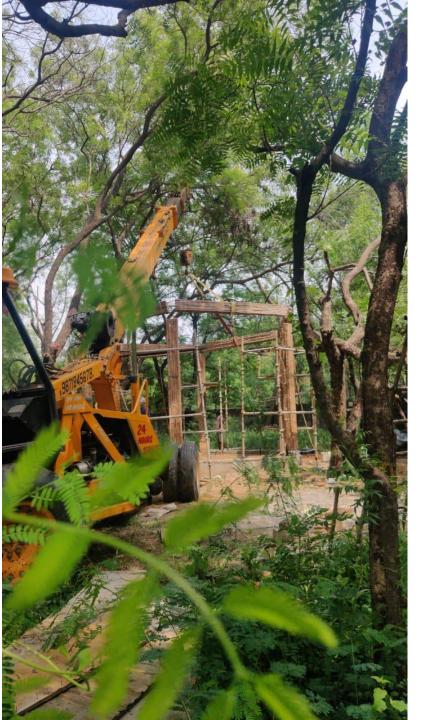
$$\frac{1.74}{12} + \frac{13.37}{12} + \frac{0.56}{12} = 1.3 < 1.33$$

Column check (1x1x0.3 m)

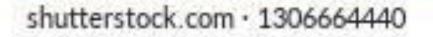


RC foundation (1x1x0.3 m)

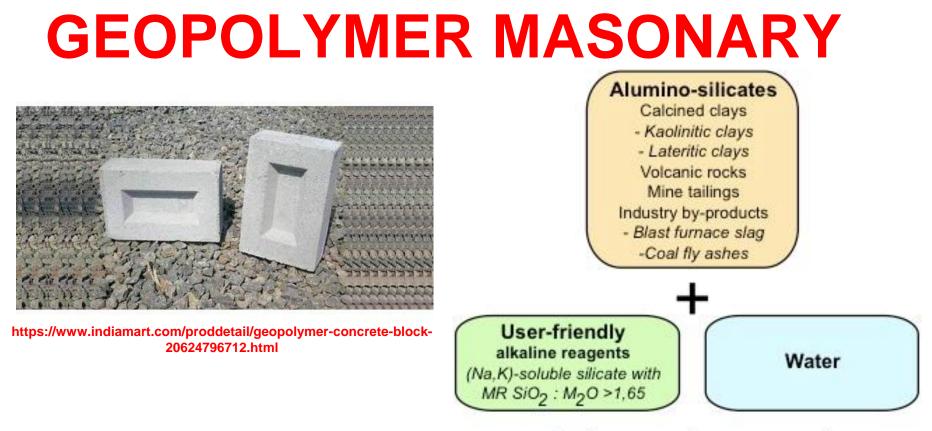
FABRICATION OF PROTOTYPE UNIT


PREFABRICATED ELENENTS

FOUNDATION 1M BELOW NGL



EXPECTED APPEARANCE


KEY ADVANTAGES

- Environment friendly
- Speedy construction
- Factory production of members => high quality
- Framed structure-much better performance under earthquake/ wind
- Walls are non-load bearing, so flexibility of expansion/ alteration
- Faster curing of epoxycrete

WALLS AND INTERIORS

High early strength, Low shrinkage

geopolymer cements

- Resistance to Freeze-Thaw, Sulfate & Acid attack, Corrosion resistance, Fire resistance and
- No dangerous alkali-aggregate reaction
- Can harden rapidly at room temperature and gain the compressive strength in the range of 20 MPa after only 4 hours at 20°C.

Prof. Visalakshi Talakokula, Co-Pl

RAMMED EARTH

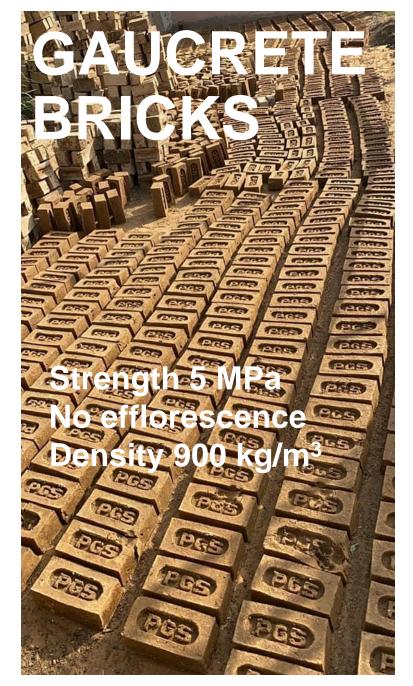
Ramming a corner wall in the first form

Adjusting panels of the second form of a corner wall

Lifting panels of the first form to the third one of a corner wall

Adjust panels of the third form of a corner wall

Lifting panels of the second form to the fourth one of a corner wall


Ramming the fourth form of a corner wall

Ramming a long wall in the second form

Prof. Visalakshi Talakokula, Co-Pl

Dr. S. D. Malik, https://www.vedicplaster.com/

ROOFING OPTION 1: BAMBOO-EPOXY-CRETE

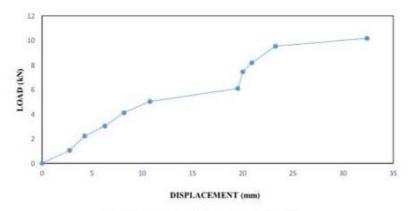
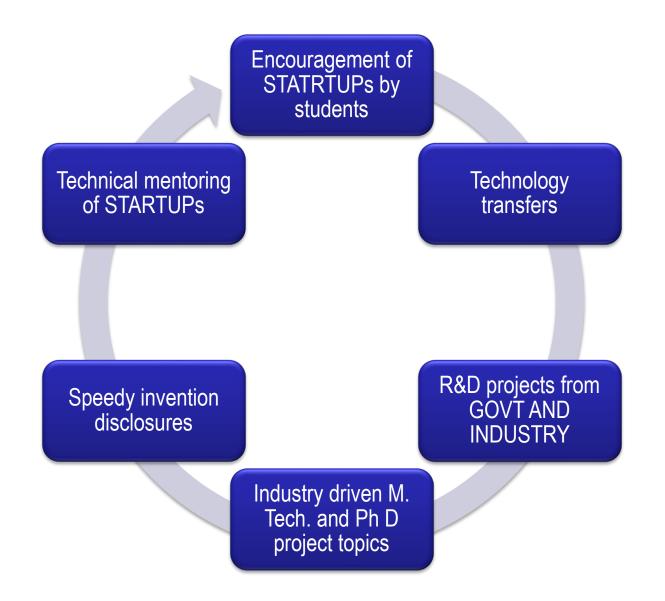


Fig 5.7: Load v/s displacement graph for slab 2

ROOFING OPTION 2: BAMBOO-EPOXY-CRETE



PATH AHEAD

INDIA'S BAMBOO STRUCTURE roadmap

- Industry-academic joint research
- Ecosystem for academicians, Start-Ups, Industry
- Policy
- Training to artisans
 and engineers

INDUSTRY PARTICIPATION/ INTEREST

Er Sudhakar Bhagat STCPLT Industry Partner

Dr S. K. DHAWAN, CHIEF ENGINEER (RETD.), CPWD OUR SPECIAL ADVISOR

INTERESTED IN FRBC TECHNOLOGY

Er K. Lalsawmvela, Technical Advisor Govt. of Mizoram Er Vijay K Saini, MD&CEO (SOUTH ASIA), GRAM INDIA INTELLI MART Ms Heena Bhatt, Hexa Int. Pvt Ltd., 9000 crore group leader into textiles, polyfilms etc. Development of High Capacity Bamboo Composite Multi-Storey Framed Structures for Sustainable Housing in High Intensity Earthquake/ Wind Zones

Project Team: Prof. Suresh Bhalla Prof. Diwakar Bhagat, Principal, DST Bihar Prof. V. Talakokula, Civil Engineering Department, Mahindra Ecole University, Hyderabad

UNDER EVALUATION

Science and Engineering Research Board

Statutory Body Established through an Act of Parliament: SERB Act 2008 Government of India

Scientific and Useful Profound Research Advancement (SUPRA)

PROJECT PROPOSAL UNDER SHRI SCHEME

TECHNOLOGICAL INTERVENTIONS AND CAPACITY BUILDING FOR WIDESPREAD AGRICULTURAL PRODUCTION AND USAGE OF TRADITIONAL BAMBOO TECHNOLOGY IN CONSTRUCTION, BIO-TECHNOLOGY AND ALLIED INDUSTRIES

- Government Polytechnic Saharsa (DST Bihar)
- Indian Institute of Technology Delhi (IIT Delhi)
- CSIR-Central Road Research Institute (CRRI)
- Indira Gandhi National Open University (IGNOU
- Mahendra University, Hyderabad
- Bhaktivedanta Gurukul and International School (BGIS)
- College of Horticulture, Bangalore
- Garden City University, Bangalore
- Industrial Partner: NISARG foundation

Home >> Science and Heritage Research Initiative (SHRI)

Science and Heritage Research Initiative (SHRI)

PROPOSED OBJECTIVES

- 1. Dissemination of modern engineered structural bamboo technology and practices.
- 2. Capacity building with practical training. Target:500 engineers, 2000 artisans
- 3. Social Marketing/awareness of bamboo related material/ products for construction, bio-technology, and allied industries. As part of this, one model bamboo structure shall be built in each of 36 states/ union territories of India.
- 4. Inclusion of modern agricultural practices for bamboo cultivation
- 5. Standardization of modern testing facilities for the bamboo characterization
- 6. Industrial production of bamboo composite elements including treatment and fabrication technologies.
- 7. Production of nanocellulose bamboo composite for bio-based packaging.
- 8. Synthesis of low-cost carbon materials from bamboo

Complete listing of theses and publications

http://web.iitd.ac.in/~sbhalla/brg

Under links: *Students *Publications

* Bamboo Research Group (BRG) EMAIL: sbhalla@civil.iitd.ac.in

THANK YOU

CONCLUSIONS

- Deficiencies of single shoot bamboo eliminated
- Development of a more reliable and generalized sections using bamboo which is comparable in strength to R.C. and Steel
- Rigorous inclusion of the principle of structural engineering, that is ability to predict capacity with reliability.
- Bamboo offers built environment conducive for life in the mode of goodness. 1/11/2022

REFERENCES

- 1. Bamboo Tribe (2021) https://bambootribe.com
- Barcelo L, Kline J, Walenta G, Gartner E (2014) CEMENT AND CARBON EMISSIONS.
 Materials and Structures 47: 1055-1065.
- Bhagat D, Bhalla S, West, R (2021) FABRICATION AND STRUCTURAL EVALUATION OF FIBRE REINFORCED BAMBOO COMPOSITE BEAMS AS GREEN STRUCTURAL ELEMENTS. Composites: Part C 5: 100150.
- 4. Gupta M. (2014) ENGINEERED BAMBOO STRUCTURES FOR SUSTAINABLE CONSTRUCTION. **B. Tech. Project, Department of Civil Engineering, IIT Delhi.**
- 5. Growmorebiotech (2021) http://www.growmorebiotech.com
- Chongtham, N (2015) THE HEALING TOUCH OF BAMBOO: SOUL, MIND AND BODY, Proc.
 10th World Bamboo Congress, Damyang, South Korea, 17-22 September.
- Kajjam S, Chaudhry DK, Bhalla S, West R. (2012) FABRICATION AND TESTING OF BUILT-UP BAMBOO COLUMNS FOR STRUCTURAL APPLICATIONS. Proc. Third Int. Conf. Mechanics of Functional Materials and Structures (ACMFMS 2012), 05-08 December, IIT Delhi, pp. 433-436.
- West R, Bhalla S, Bhagat D (2017) FLEXIBLE RESPONSE OF BAMBOO-EPOXY FRAMES, Journal of Structural Integrity and Maintenance 2(2):70-77.
- 9. World Steel Association (2020) http://www.worldsteel.org

Complete listing of theses and publications

http://web.iitd.ac.in/~sbhalla/brg

Under links: *Students *Publications

* Bamboo Research Group (BRG) EMAIL: sbhalla@civil.iitd.ac.in

THANK YOU

WORK COMPLETED (>75%)

- 3D modelling, linear and non-linear analysis of FRBC beam elements as well as 3D FRBC frames completed (One M. Tech. project).
- Analysis and Design and of single and double storey frame model made of FRBC elements in STAAD PRO has been completed (Two M. Tech. projects completed).
- Fabrication of all FRBC beams and columns (total 12 numbers) of the proposed prototype house has been completed.
- RC substructure has been constructed with connection detail amenable to attaching FRBC columns.
- Superstructure FRBC frame with suitable joining details at beamcolumn junctions has been completed.
- Preliminary evaluation of rammed earth for walls of the superstructure has been completed.