NITI Aayog
Task Force on Use of Technologies for Agriculture Insurance

Sub Group-1
(REMOTE SENSING AND UAVs)

Satellite and UAV Remote Sensing for Agriculture Insurance
Objective

Comprehensive assessment of the scope for using
• Satellite remote sensing technology
• Geospatial technology
• Unmanned Aerial Vehicle (UAV) based remote sensing

for strengthening Agriculture insurance in the country

Focus
• Immediate deliverables and operational capabilities
• Research issues – medium and long term

Inputs used
• Satellite data sets/derived indices
• Satellite derived thematic layers
• Satellite based biophysical parameters
• Reports
• UAV studies and reports
• Discussions with experts
Technology interventions in crop insurance

The sub-group has identified the following technology intervention areas in the crop insurance value chain

(1) rate making
(2) insurance coverage and compliance
(3) prevented /failed sowing risk
(4) crop mapping & area discrepancy
(5) mid-season adversaries
(6) crop loss due to natural calamities
(7) localized risk
(8) Crop Cutting Experiments and
(9) post-harvest damage assessment

Opportunities for technology utilization under each component have been discussed in the report
Specific recommendations

• Technology based information products and services are useful inputs in each of the identified 9 segments of crop insurance and hence establishing a viable mechanism to generate these inputs is recommended.

• Information products and services currently available from NRSC, SAC, IMD ... are highly relevant and hence evolve a mechanism for their effective utilisation

• Strong geo-referenced cadastral map base and its linkage with different records

• Low cost/free satellite data of moderate resolution (5-60m), reasonable revisits, proven tools and techniques for analysis, Mobile technology offer scope for immediate use.
Specific recommendations

• Crop mapping and crop distribution information products for major crops in rabi season and selected crops in monsoon season

• Crop surveillance and agricultural intelligence information products are to be generated continuously and integrate with crop insurance.

• Scope exists for developing operational procedures to generate GIS maps with mobile data and link the same with indemnity assessment process

• Institutional participation – Line Departments, special emphasis – KVKs of ICAR and Dept. of Posts
Crop Cutting Experiments (CCE) – Road map for improvement

Phase 1: **Transparent CCE** – Use GNSS enabled mobile apps for data recording, CCE auditing and timely information reporting. These interventions can be brought in to the system with immediate effect.

Phase 2: **Improved CCE** – Improve the sampling design using yield proxy information, reduce the sample size and improved distribution of the sample plots. Remote sensing derived crop vigour indices, weather data sets and field information are to be effectively blended to generate crop yield proxy indices that act as basis to refine the sampling designs.

Phase 3: **Alternate to the CCE mechanism**: Development of crop yield estimation methods based on simulation models or empirical models with multiple (including remotely sensed) inputs will enable generation of scalable crop yield maps. Such maps are potential data sets as alternate options to CCE process for crop yield estimation. Considering the complexities and challenges associated with crop yield models, this activity is rightly positioned as a long term activity.

Research Issues: Development, validation and standardization of yield proxies with an integrated approach is a medium term research activity and Development of crop yield models based on remotely sensed inputs
Crop Cutting Experiments (CCE) – Road map for improvement

Phase 1: Transparent CCE – Use GNSS enabled mobile apps for data recording, CCE auditing and timely information reporting. These interventions can be brought in to the system with immediate effect.

Phase 2: Improved CCE – Improve the sampling design using yield proxy information, reduce the sample size and improved distribution of the sample plots. Remote sensing derived crop vigour indices, weather data sets and field information are to be effectively blended to generate crop yield proxy indices that act as basis to refine the sampling designs.

Phase 3: Alternate to the CCE mechanism: Development of crop yield estimation methods based on simulation models or empirical models with multiple (including remotely sensed) inputs will enable generation of scalable crop yield maps. Such maps are potential data sets as alternate options to CCE process for crop yield estimation. Considering the complexities and challenges associated with crop yield models, this activity is rightly positioned as a long term activity.

Research Issues: Development, validation and standardization of yield proxies with an integrated approach is a medium term research activity and Development of crop yield models based on remotely sensed inputs
<table>
<thead>
<tr>
<th>Sl No.</th>
<th>Crop insurance requirement</th>
<th>Technology based deliverables</th>
<th>Technology utilization status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Insurance rate making</td>
<td>Hazard and vulnerability maps</td>
<td>Immediate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For selected states and disasters</td>
<td>Medium term (next 3-4 years)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For all states and major disasters</td>
<td>Long term (next 4-7 years)</td>
</tr>
<tr>
<td>2</td>
<td>Insurance coverage and expansion</td>
<td>Digital geo-referenced land records, Real-time field info. on coverage</td>
<td>Can be used all over</td>
</tr>
<tr>
<td>3</td>
<td>Prevented/failed sowing risk</td>
<td>Spectral indices, Surface soil moisture, Modelled soil moisture, Rainfall data</td>
<td>Implementable at Taluk/district level</td>
</tr>
<tr>
<td>4</td>
<td>Mid-season adversary</td>
<td>Realtime field information</td>
<td>Can be used all over</td>
</tr>
</tbody>
</table>
Time frame for technology utilisation contd..

<table>
<thead>
<tr>
<th>SI No.</th>
<th>Crop insurance requirement</th>
<th>Technology based deliverables</th>
<th>Technology utilization status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Technology based deliverables</td>
<td>Immediate</td>
</tr>
<tr>
<td>5</td>
<td>Natural calamity Flood/cyclones</td>
<td>Flood maps, Cropped area maps</td>
<td>Extent of crop area affected</td>
</tr>
<tr>
<td>6</td>
<td>Crop mapping & surveillance, area discrepancy</td>
<td>Crop mapping Crop condition maps, Weather anomaly maps</td>
<td>Kharif and Rabi. Cloud free data availability in kharif. Microwave for rice mapping</td>
</tr>
<tr>
<td>Sl No.</td>
<td>Crop insurance requirement</td>
<td>Technology based deliverables</td>
<td>Technology utilization status</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------</td>
<td>-------------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Immediate</td>
</tr>
<tr>
<td>7</td>
<td>Crop yield estimation in the insurance units</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Improving CCE mechanism</td>
<td>Mobile Apps, Satellite data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reduce CCE plots/ optimal sampling design</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Replace CCE process</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Crop loss assessment from abnormal events</td>
<td>Satellite indices, Mobile apps</td>
<td>To some extent. Mobile Apps and limited spectral indices</td>
</tr>
<tr>
<td>9</td>
<td>Post harvest losses</td>
<td>Real time field information</td>
<td>Mobile App based enumeration</td>
</tr>
</tbody>
</table>
EO Systems for Crop Insurance

Satellite Data / Services

- 3-4 optical satellites
- 10-30m spatial resolution
- 10 day repetitivity
- Visible, NIR, SWIR

2 microwave satellites
1 hyper-spectral satellite

Cost aspects

Satellite data sets – low priced/free
Mobile technology – low cost
Softwares – open source

Cost of technology use – Rs.5-10/ha
Small fraction of indemnity/sum insured
UAV remote sensing

- Selective use to complement/supplement satellite data
- Quick assessment over inaccessible areas
- Assessment for certain specific events

- Not many success stories in India
- Nor detailed analysis is reported
- Isolated case studies

Issues

- Standard procedures for rapid acquisition
- Radiometry / geometry corrections
- Integration with satellite indices
- Data storage issues
- Permissions

Researchable Issue:
Development of methodology on UAV based remote sensing for growth monitoring of different crops (cereals, pulses, fruit crops, growth stages, crop coverage (varying LAI) and environment like irrigated and rainfed conditions and upscale to regional scale using satellite images
Strategies for integrating technologies with crop insurance

1. Utilisation of the current capabilities of technologies and available data and information
2. Research agenda based on user needs
3. Awareness and Capacity building to stakeholders

Action plans

- Mechanism for generation and delivery of products & services
 - Satellite data
 - Mobile technology
 - ...
- Collaborative R & D efforts with Industry and Government
- Workshops and training programmes

Coordination with S & T institutions, Commitment and participation from States and insurance companies are vital for successful use of technologies in crop insurance
Thank you